Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We have analyzed high-dispersion spectra in the Li 6708 Å region for 167 stars within the anticenter cluster NGC 2204. From 105 probable members, abundance analysis of 45 evolved stars produces [Fe/H] = −0.40 ± 0.12, [Si/Fe] = 0.14 ± 0.12, [Ca/Fe] = 0.29 ± 0.07, and [Ni/Fe] = −0.12 ± 0.10, where quoted errors are standard deviations. WithE(B−V) = 0.07 and (m−M)0= 13.12, appropriate isochrones provide an excellent match from the main sequence through the tip of the giant branch for an age of 1.85 ± 0.05 Gyr. Li spectrum synthesis producesA(Li) below 1.4 at the base of the red giant branch to a detectable value of −0.4 at the tip. Six probable asymptotic giant branch stars and all but one red clump star have only Li upper limits. A rapidly rotating red giant is identified as a possible Li-rich giant, assuming it is a red clump star. Main-sequence turnoff stars have a well-definedA(Li) = 2.83 ± 0.03 (sem) down to the Li-dip wall at the predicted mass of 1.29M☉. Despite having the same isochronal age as the more metal-rich NGC 2506, the luminosity distribution of red giants reflects a younger morphology similar to NGC 7789, possibly indicating a deeper impact of metallicity on stellar structure andA(Li) than previously assumed. As in NGC 2506 and NGC 7789, the NGC 2204 turnoff exhibits a broad range of rotation speeds, making abundance estimation impossible for some stars. The place of the cluster within GalacticA(Li) evolution is discussed.more » « less
-
ABSTRACT Chemical abundance anomalies in twin stars have recently been considered tell-tale signs of interactions between stars and planets. While such signals are prevalent, their nature remains a subject of debate. On the one hand, exoplanet formation may induce chemical depletion in host stars by locking up refractory elements. On the other hand, exoplanet engulfment can result in chemical enrichment, and both processes potentially produce similar differential signals. In this study, we aim to observationally disentangle these processes by using the Ca ii infrared triplet to measure the magnetic activity of 125 co-moving star pairs with high signal-to-noise ratio, and high-resolution spectra from the Magellan, Keck, and VLT (Very Large Telescope) telescopes. We find that co-natal star pairs in which the two stars exhibit significant chemical abundance differences also show differences in their magnetic activity, with stars depleted in refractories being magnetically more active. Furthermore, the strength of this correlation between differential chemical abundances and differential magnetic activity increases with condensation temperature. One possible explanation is that the chemical anomaly signature may be linked to planet formation, wherein refractory elements are locked into planets, and the host stars become more active due to more efficient contraction during the pre-main-sequence phase or star–planet tidal and magnetic interactions.more » « less
-
Abstract We consider WIYN/Hydra spectra of 329 photometric candidate members of the 420 Myr old open cluster M48 and report lithium detections or upper limits for 234 members and likely members. The 171 single members define a number of notable Li-mass trends, some delineated even more clearly than in Hyades/Praesepe: the giants are consistent with subgiant Li dilution and prior MS Li depletion due to rotational mixing. A dwarfs (8600–7700 K) have upper limits higher than the presumed initial cluster Li abundance. Two of five late A dwarfs (7700–7200 K) are Li-rich, possibly due to diffusion, planetesimal accretion, and/or engulfment of hydrogen-poor planets. Early F dwarfs already show evidence of Li depletion seen in older clusters. The Li–Tefftrends of the Li Dip (6675–6200 K), Li Plateau (6200–6000 K), and G and K dwarfs (6000–4000 K) are very clearly delineated and are intermediate to those of the 120 Myr old Pleiades and 650 Myr old Hyades/Praesepe, which suggests a sequence of Li depletion with age. The cool side of the Li Dip is especially well defined with little scatter. The Li–Tefftrend is very tight in the Li Plateau and early G dwarfs, but scatter increases gradually for cooler dwarfs. These patterns support and constrain models of the universally dominant Li depletion mechanism for FGK dwarfs, namely rotational mixing due to angular momentum loss; we discuss how diffusion and gravity-wave-driven mixing may also play roles. For late G/K dwarfs, faster rotators show higher Li than slower rotators, and we discuss possible connections between angular momentum loss and Li depletion.more » « less
-
ABSTRACT We present WIYN1/Hydra spectra of 34 red giant candidate members of NGC 188, which, together with WOCS2 and Gaia data yield 23 single members, 6 binary members, 4 single non-members, and 1 binary non-member. We report [Fe/H] for 29 members and derive [Fe/H]NGC188 = +0.064 ± 0.018 dex (σμ) (sky spectra yield A(Fe)⊙ = 7.520 ± 0.015 dex (σμ)). We discuss effects on the derived parameters of varying Yale-Yonsei isochrones to fit the turnoff. We take advantage of the coolest, lowest gravity giants to refine the line list near Li 6707.8 Å. Using synthesis we derive detections of A(Li)3 = 1.17, 1.65, 2.04, and 0.60 dex for stars 4346, 4705, 5027, and 6353, respectively, and 3σ upper limits for the other members. Whereas only two of the detections meet the traditional criterion for ‘Li-richness’ of A(Li) > 1.5 dex, we argue that since the cluster A(Li) vanish as subgiants evolve to the base of the RGB, all four stars are Li-rich in this cluster’s context. An incidence of even a few Li-rich stars in a sample of 29 stars is far higher than what recent large surveys have found in the field. All four stars lie either slightly or substantially away from the cluster fiducial sequence, possibly providing clues about their Li-richness. We discuss a number of possibilities for the origin for the Li in each star, and suggest potentially discriminating future observations.more » « less
An official website of the United States government
